3.346 \(\int (a+a \cos (c+d x))^{3/2} \sec ^{\frac{9}{2}}(c+d x) \, dx\)

Optimal. Leaf size=161 \[ \frac{2 a^2 \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{26 a^2 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{104 a^2 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{105 d \sqrt{a \cos (c+d x)+a}}+\frac{208 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{105 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(208*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (104*a^2*Sec[c + d*x]^(3/2)*Sin[c
 + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (26*a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c +
d*x]]) + (2*a^2*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.308021, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4222, 2762, 21, 2772, 2771} \[ \frac{2 a^2 \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{26 a^2 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{35 d \sqrt{a \cos (c+d x)+a}}+\frac{104 a^2 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{105 d \sqrt{a \cos (c+d x)+a}}+\frac{208 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{105 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(9/2),x]

[Out]

(208*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (104*a^2*Sec[c + d*x]^(3/2)*Sin[c
 + d*x])/(105*d*Sqrt[a + a*Cos[c + d*x]]) + (26*a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(35*d*Sqrt[a + a*Cos[c +
d*x]]) + (2*a^2*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac{9}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}-\frac{1}{7} \left (2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{13 a}{2}-\frac{13}{2} a \cos (c+d x)}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 a^2 \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{7} \left (13 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{26 a^2 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{35} \left (52 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{104 a^2 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{105 d \sqrt{a+a \cos (c+d x)}}+\frac{26 a^2 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{1}{105} \left (104 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{208 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{105 d \sqrt{a+a \cos (c+d x)}}+\frac{104 a^2 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{105 d \sqrt{a+a \cos (c+d x)}}+\frac{26 a^2 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.276753, size = 72, normalized size = 0.45 \[ \frac{2 a (117 \cos (c+d x)+26 \cos (2 (c+d x))+26 \cos (3 (c+d x))+41) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)}}{105 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(9/2),x]

[Out]

(2*a*Sqrt[a*(1 + Cos[c + d*x])]*(41 + 117*Cos[c + d*x] + 26*Cos[2*(c + d*x)] + 26*Cos[3*(c + d*x)])*Sec[c + d*
x]^(7/2)*Tan[(c + d*x)/2])/(105*d)

________________________________________________________________________________________

Maple [A]  time = 0.428, size = 83, normalized size = 0.5 \begin{align*} -{\frac{2\,a \left ( 104\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-52\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-13\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-24\,\cos \left ( dx+c \right ) -15 \right ) \cos \left ( dx+c \right ) }{105\,d\sin \left ( dx+c \right ) } \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{9}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)*sec(d*x+c)^(9/2),x)

[Out]

-2/105/d*a*(104*cos(d*x+c)^4-52*cos(d*x+c)^3-13*cos(d*x+c)^2-24*cos(d*x+c)-15)*cos(d*x+c)*(1/cos(d*x+c))^(9/2)
*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 1.62388, size = 355, normalized size = 2.2 \begin{align*} \frac{4 \,{\left (\frac{105 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{245 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{273 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{171 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac{38 \, \sqrt{2} a^{\frac{3}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )}{\left (\frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{105 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (\frac{3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

4/105*(105*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 245*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c)
+ 1)^3 + 273*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 171*sqrt(2)*a^(3/2)*sin(d*x + c)^7/(cos(d*x
 + c) + 1)^7 + 38*sqrt(2)*a^(3/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 +
1)^3/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(3*sin(d*x +
c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.65068, size = 238, normalized size = 1.48 \begin{align*} \frac{2 \,{\left (104 \, a \cos \left (d x + c\right )^{3} + 52 \, a \cos \left (d x + c\right )^{2} + 39 \, a \cos \left (d x + c\right ) + 15 \, a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{105 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

2/105*(104*a*cos(d*x + c)^3 + 52*a*cos(d*x + c)^2 + 39*a*cos(d*x + c) + 15*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x
 + c)/((d*cos(d*x + c)^4 + d*cos(d*x + c)^3)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*sec(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{\frac{9}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(9/2), x)